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This paper is concerned with the construction of a thermodynamical theory for
turbulence based on a continuum model consistent with a wide range of experimental
results and observations. A complete theory with appropriate constitutive equations
is developed for viscous turbulent flow but the special case of (rate-independent)
inviscid turbulent flow is also discussed. The theoretical results obtained readily
account for such mechanical aspects of turbulent flow as anisotropy, as well as the
energetic effects of turbulent fluctuations, in addition to the more standard
thermomechanical effects. More specifically, three different scales of motion and
modelling, namely molecular, microscopic and macroscopic, are considered in the
construction of the basic theory. Whereas the ordinary thermal effects (such as
temperature) on the macroscopic scale represent the manifestation of vibratory
motions at the molecular level, similar variables are used to represent the energetic
turbulent effects on the macroscopic level that arise from turbulent fluctuations at the
microscopic level. The various ingredients of the thermodynamical aspects (both due
to thermal and turbulent effects) of the continuum model are incorporated into the
theory by means of a recent procedure to thermodynamics by Green & Naghdi (Proc.

Vol. 327. A 1595 27 [Published 27 January 1989
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416 J-.SS.MARSHALL AND P. M. NAGHDI

R. Soc. Lond. A 357,253 (1977)). The mechanical aspects of the model for a turbulent
fluid requires admission of additional balance laws for eddy concentration and for a
kinematical variable which represents the effect of alignment of these eddies (at the
microscopic level) along a particular direction on the macroscopic scale, in
accordance with observations by Townsend (7he structure of turbulent shear flow,
Cambridge University Press (1976)) and others.

1. INTRODUCGCTION

Numerous experimental results reported in the turbulence literature of the past four decades
appear to indicate that turbulent flow is strongly influenced by the existence, and alignment
in certain preferred directions, of a certain class of ‘large’ eddies or vortices that contain most
of the energy associated with turbulent fluctuations. This class of eddies is referred to as ‘large
eddies’ in some of the older literature, but in the more recent literature (for example,
Townsend (1976) and Savill (1987)) is identified as the ‘main turbulent motion’ or ‘roller
eddies’. Recent interest in the structure of large eddies of this class and in their interaction with

_ the so-called ‘mean’ flow has produced a substantial volume of literature. The purpose of the
present paper is to construct a manageable theory of turbulence which accommodates both the
effect of alignment of these large eddies and the energetic effects of turbulent fluctuations, as
well as the usual thermomechanical effects. '

Many theories of turbulence employ a constitutive relationship for the ‘mean’ stress similar
to that of a linear viscous fluid in laminar motion and allow the viscosity coefficients to depend
upon a set of additional parameters (such as ‘turbulent energy’, ‘mixing length’, ‘pseudo-
vorticity’, ‘turbulent dissipation’, etc.), and all of these are intended to describe some details
of the turbulent motion. In the early studies of Taylor (1915) and Prandtl (1925) and more
recently in the work of Cebeci & Smith (1974), these additional variables are simply prescribed
for a particular flow. Several later studies (for example, Saffman 1970; Bradshaw 1972;
Lumley 1970; Launder et al. 1975) assign a certain ‘model equation’ to each of these
additional variables in the hope of obtaining equations valid for all flow-field geometries.
Although models employing this type of stress constitutive equations have produced some
interesting results in certain special cases, they have not been able to properly account for the
‘anisotropic’ structure of turbulence. Several fairly recent developments (such as ‘stress-
equation’ modelling, modern ‘rapid-distortion’ theory, and ‘large-eddy simulations’) attempt
to correct for this shortcoming in various ways; however, these studies tend either to be
extremely ad hoc or to depend heavily on a specified computational procedure (see reviews by
Reynolds (1976) and Savill (1987)). Although computer simulations of the large eddy
movements using simplified models of the small-scale eddies are yielding increasingly
interesting and useful results, the need for a complete physical theory of turbulence that
incorporates the effect of alignment of the large eddies, as well as the energetic effects of
turbulent fluctuations, still exists. Such a theory, as discussed here, must necessarily include a
thermomechanical procedure by which appropriate conservation laws and constitutive
equations for the additional turbulence parameters may be introduced in full agreement with
the requirements of continuum physics and a given concept of the microscopic flow
structure.
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1.1. Scales of motion and modelling : macroscopic, microscopic and molecular scales

Before a discussion of the contents of the paper, we first describe various scales of motion that
will be referred to throughout the paper. It is common in the study of ordinary fluids to model
the behaviour of the fluid as a macroscopic continuum, although on a much finer scale the same
fluid may be viewed as an aggregate of discrete molecules. It is conceivable that the same
equations which represent the macroscopic motion in one régime may describe motion on a
scale which in some sense is ‘microscopic’ in another régime, the designation ‘macroscopic’
being here reserved for an even coarser scale of modelling. This type of situation indeed occurs
in regard to the usual Navier—Stokes equations when crossing over from the laminar to the
turbulent régimes. Thus, for a turbulent flow, we admit three distinct scales of motion —
macroscopic, microscopic and molecular —such that in the laminar flow régime the
macroscopic and microscopic scales are equivalent. To further illustrate these levels of physical
modelling, consider the flow of a typical fluid, water say, in a straight circular pipe. Near the
mouth of the pipe, the fluid is laminar; and, by modelling the fluid as a continuum, solutions
for the primary quantities of interest (such as velocity and shear stresses) can be readily
obtained. Here any model of the fluid on a molecular scale is intended to serve as a
‘background’ model for the continuum theory. By this we mean that although certain features
of the molecular motion may be represented in the continuum theory, such as the representation
of the intensity of molecular vibrations by temperature; one is not interested in every detail of
the molecular motion, i.e. one is not interested in the location of every molecule for all times.
Alternatively, one may attempt to solve for the aforementioned quantities of interest directly
from a molecular model of the fluid. This latter approach is, of course, in general neither
expedient nor practical if indeed it is even possible. As we progress further along the pipe, the
fluid becomes unsteady to small changes in velocity and eventually becomes turbulent. In a
turbulent fluid, it is no longer straightforward to obtain solutions for the primary quantities of
interest from a continuum theory that is represented only by the Navier-Stokes equations. This
is because the flow is immensely complicated by the presence of a large number of eddies and
vortices. Furthermore, the applications to which we usually apply turbulent modelling no
longer require that we know the velocity at every point in the fluid or the shear stresses on the
pipe wall for every instant of time, but rather some mean value of these variables. (This is not
to say, of course, that knowledge of the instantaneous values of these quantities would not
enhance our understanding of the basic mechanisms of the turbulent fluctuations.) At this
point in our discussion, it is advantageous to make the scale of our physical model somewhat
coarser so that the relevant equations resulting from the model can be solved directly for the
quantities of interest. Thus, we define the macroscopic level as the scale of motion which describes
in some sense the ‘bulk’ or ‘mean’ features of the flow. (The word ‘mean’ here is not intended
in a strictly mathematical sense. In view of the additional kinematical and thermal structure
to be introduced presently, the macroscopic field variables as defined here are not necessarily
the same as the usual ‘mean’ flow values of the classical variables.) At times, however, it may
become necessary to refer back to our original scale containing turbulent eddies and vortices.
We, therefore, define the microscopic level as the scale of motion in which turbulent fluctuations
of the continuum are occurring. Although the microscopic level may be well described by the
standard Navier-Stokes equations, new conservation and constitutive equations must be found
for the macroscopic level. In laminar flow, of course, the microscopic and macroscopic levels

27-2
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418 J.S.MARSHALL AND P. M. NAGHDI

become coincident, so the governing equations of the desired macroscopic turbulent theory
must contain the Navier-Stokes equations as a special case.

Before leaving this discussion on basic approaches to turbulence modelling, it may be of
value to briefly contrast the approach of the present theory with those usually used in studies
of turbulence. Perhaps the most common type of turbulence modelling involves. statistical
averaging of the microscopic flow equations (i.e. the usual ‘Reynolds averaging’). Despite their
long usage in the literature, statistical studies have produced relatively few results of general
interest and suffer from the well-known ‘closure’ problem. Also, it is very difficult in statistical
studies to identify the effects of the underlying microscopic structures which influence the
macroscopic turbulent flow. In response to this latter difficulty, many theoretical studies have
recently turned to the construction and solution of certain idealized (laminar) flows that seem
similar to such microscopic turbulence structures. These studies then attempt to somehow
combine the idealized flow structures to form governing equations for the macroscopic flow;
however, the manner in which the microscopic solutions are combined varies greatly, and the
resulting macroscopic equations often bear a closer resemblance to a computational scheme
than to the governing equations of a physical theory. The present paper represents an attempt
to formulate a manageable physical theory of macroscopic turbulent flow. This theory has the
ability to incorporate many of the previously mentioned idealized microscopic solutions; and,
indeed, such a procedure is desirable in order to motivate physically realistic forms of
constitutive equations for certain of the dependent variables.

1.2. Additional independent variables for turbulence

As will become evident later, the turbulent fluid in the present paper is modelled directly on
the macroscopic level and both the microscopic and molecular levels are treated as background
models. However, certain independent variables are admitted in the macroscopic model to
describe particular features of phenomena occurring at the microscopic and molecular levels.
A classic example of such a variable is temperature, which is commonly used in continuum
theories to describe the intensity of the chaotic, or ‘hidden,” motion of the molecules. (The
terminology of ‘hidden’ motion here refers to motion in one or more background models which
is not represented by the macroscopic kinetic energy.) In turbulent flow, such ‘hidden’ motions
occur both on the molecular and microscopic levels, so two temperature-like variables are
needed. These temperatures, designated as the ‘thermal temperature’ and the ‘turbulent
temperature’, describe the respective intensities of molecular vibrations and turbulent
fluctuations. Additionally, certain structures arising from turbulent fluctuations at the
microscopic level are thought to influence the macroscopic responses, giving rise to the so-called
‘anisotropic’ effects often observed in turbulent flow experiments. The existence of these
structures and the means by which they affect the ‘mean’ flow in the turbulent régime was
demonstrated by Townsend (1956, 1976) and Grant (1958), among others. A list of quotations
from various sources which lend support for the model presented in §§4 and 5 is collected in
Appendix A. < ‘

Certain microscopic structures possessing directional dependence are represented on a
macroscopic scale by the introduction of a single additional vector-valued quantity, called
director. Background information concerning ‘directed’ or ‘oriented’ media (also called
Cosserat continua), which utilize one or more directors may be found in several papers
included in the list of references, for example, Ericksen (1961), Green et al. (1965), Leslie
(1968), Green & Naghdi (19764, 5), Naghdi (1982), as well as in Truesdell & Noll (1965),
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Naghdi (1972) and Chandrasekhar (1977). As noted in the preceding paragraph, two
temperature-like variables are used in our characterization of turbulent model. In this
connection, it should be noted that the notion of two or more temperatures has been utilized
previously in different contexts for thermoelastic shells (Green & Naghdi 19794) and for
mixtures with different constituent temperatures (Green & Naghdi 1978).

Returning to the description of the model used, in conjunction with the director and the
notion of two temperatures, we also admit N additional scalar-valued quantities and associated
balance equations in the development of the general theory. Two of these quantities are
identified as ‘thermal entropy’ and as ‘turbulent entropy’. Using a recent approach to
thermodynamics developed by Green & Naghdi (1977a), we find that the existence of two
distinct entropies is demanded by the assumption of two temperatures, such that the entropy
balance laws provide sufficient equations for the determination of the temperature fields.
Another of these scalar-valued quantities is identified as the ‘eddy density’, i.e. the number of
eddies of a certain class per unit volume of the fluid. The eddy density (as defined in §5) can
be related to the ‘mixing length’ of Prandtl (1925) or, in conjunction with the turbulent
temperature, to the ‘turbulence dissipation’ parameter used by Launder ¢t al. (1975) or the
‘psuedo-vorticity’ scalar used by Saffman (1970). : ,

1.3. A description of the contents of the paper

In §2 of the paper a fairly rapid summary is given for a continuum theory of a directed
medium endowed with a single director and N additional scalar quantities. Here the balance
laws are first stated in integral form, as they are needed in the subsequent derivation of the
jump conditions over a surface of discontinuity in §3. These jump conditions are more general
than those usually presented in the three-dimensional continuum mechanics literature in that
supply of various fundamental quantities are also admitted at the surface of discontinuity. The
thermodynamics pertinent to a discussion of turbulent fluid flow are developed in §4. It is here
that the thermal and turbulent temperatures, as well as their associated entropies, are explicitly
introduced. A specific model for the mechanical aspect of a turbulent fluid, based upon the
observations of Townsend (1956, 1976) and others (see Appendix A), is presented in §5 and
incorporates an additional balance law for eddy density. Further, because this model requires
that a certain constraint be imposed on the director, the forms of the constraint response
functions are developed in the rest of this section. The treatment of the constrained director
follows the approach of Green et al. (1970; §6).

The restrictions on constitutive equations for viscous turbulent flow (for both compressible
and incompressible fluids), apart from those arising from considerations of invariance under
superposed rigid body motions, are obtained in accordance with the recent approach to
thermodynamics of deformable media by Green & Naghdi (19774) in §6. Although additional
restrictions may be imposed from the Second Law of Thermodynamics, they are not discussed
in the present paper. In §7, the jump conditions developed in §3 are applied to the special case
of the interface separating a turbulent fluid and a non-turbulent material. In §8, the more
general theory of §§5 and 6 is simplified for a (rate-independent) inviscid fluid, both for
compressible and incompressible cases. Finally, some additional remarks are provided in §9
concerning the main features of the theory proposed in this paper, along with some comments
that are intended to clarify the importance of invariance requirements under superposed rigid
body motions. The latter comments are included here only because the validity of invariance
requirements has been questioned in some of the recent literature on turbulence.
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2. Basic CONCEPTS; CONSERVATION LAWS

~ As noted in §1, the purely mechanical aspects of our development are formulated in the
context of the three-dimensional theory of directed media, and we only need to utilize a single
director. The thermodynamical aspects of the subject as presented here follow the procedure
of Green & Naghdi (1977a) who, in addition to the balance of energy, also introduced a
balance of entropy. This balance of entropy leads to a scalar field equation, which, in particular,
involves the rate of entropy and the rate of internal generation of entropy, as well as the rate
of heat supply and the flux of entropy (see Green & Naghdi 19774, equations (2.3) and (2.6)).
As will become evident in §§4 and 5, for our continuum model of turbulence we require still
two other balance laws involving scalar fields that.are symbolically analogous to the entropy
balance of Green & Naghdi. Because of this, as well as other considerations mentioned in §§4
and 5, it is convenient to record a gencral balance law for N scalar fields instead of one or more
separate scalar balance laws. :
- We consider here a finite body @—m the context of directed media — with each of its
material points (or particles) X being endowed with an additional independent kinematical
vector field, namely a director. Thus, let the material point X and the director at X, be
identified by the place X and the value of the single director D = D(X) in a fixed reference
configuration ky; and, similarly, denote the corresponding quantities in the current
configuration k of the body at time ¢ by the place x and the director d = d(D, ) at x. A motion
of such a body is then'defined by sufficiently smooth vector functions y and £ which assign the
place x and director d to each material pomt of # at each instant of time, i.e. :

x=2X0, d=2(D,). ey

Clearly, in view of the dependence of the reference director D on X, the right-hand side of
(2.1); can'be expressed as a different function of X, ¢. We assume that (2.1),, but not (2.1),,
is ‘invertible for a fixed value of ¢ so that the jacobian of transformation associated with
(2.1), does not vanish; for definiteness, however, we stipulate the jacobian det F > 0, where
F= ax/aX Also, the ordmary partlcle velocity v and the director velocity w are defined by

v=2x w=d, ' ' @m

wherc a superposed dot denotes material time differentiation with rcspcct to ¢ holding X
fixed.

In the present configuration, the body % bounded by a closed surface 0% occupies a region
of space # bounded by a closed surface 0. Similarly, in the present configuration, an arbitrary
material volume of Z occupies a portion of # designated here by Z(< #) and bounded by.a
closed surface 02. The outward unit normal to this surface is n.

It is convenient at this point to define certain additional quantities which occur in the
balance laws: the mass density p = p(X, ) of & in the current configuration; the stress vector

-t = t(X,t;n) and the director stress (or the stress couple) vector m = m(X, ¢; n), each measured
per unit area in the current configuration ; the external body force b = b(X, ) and the external
director body force I = I(X, ¢), each per unit mass; the intrinsic director force k = k(X t) per
unit volume in the current configuration; the specific internal energy € = ¢(X, ¢); the heat flux
h = h(X,t;n) per unit time and measured per unit area in the current configuration; and the
heat supply r = 7(X, f) per unit time and per unit mass. In addition, we need to introduce
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scalar-valued fields 7" = 77 (X, ¢) per unit mass (N = 1,2, ..., K), an internal rate of supply (or
production) &Y = £V (X, f) per unit mass, the external rate of supply sV = s¥(X,¢) and the
internal surface flux ¥ = k¥ (X, ¢; n) measured per unit area of the surface 0. It should be
emphasized that the dependence of the scalar fields £~ on the outward unit normal n is similar
to the dependence of the heat flux 4 and the vectors ¢ and m on n.
We also assume. the kinetic energy per unit mass for the directed medium under
consideration to have the form
k=3}vv+2y, 0" wHy,ww), (2.3)

where the inertia coefficients y; = y,(X) and y, = y,(X) are independent of time and in general
require constitutive equations. In view of (2.3), we define the momentum per unit mass
corresponding to the velocity v and the director momentum per unit mass corresponding to the
director velocity w by

Ok/v=v+y,w, Ok/OwW=y ,v+y,w. (2.4)
Also the physical dimensions of p, ¢, b are

phys. dim, p = [ML™®], phys. dim. ¢ = [ML“T’z],}
phys. dim. b = [LT?], ’

where the symbols [L], [M] and {T] stand for the physical dimensions of length, mass and time.
The dimensions of the vector fields m, I, k depend upon the physical dimension that one may
assume for d. Here we assume that d has the dimension of length and then m, I will have
the same physical dimensions as ¢, b in (2.5) while £ will have the physical dimension of
[ML™T?]. {It should be noted that if d is specified to be dimensionless, then the physical
dimension of m will be [MT*] corresponding to the physical dimension of a stress couple.}

In terms of the above definitions of the various field quantities and with reference to the
present configuration, the various conservation laws for any part & of a directed body under
discussion are:

(2:5)

)
d
a‘t' ?pdv—O,
d
- .p(v+y1w)dv=f pbdv+f tda,
di k4 4 o
d( )
- | plyyv+y,w)dv= | (pl—k)dv+| mda,
dt ), ? o2
r
d p[xx(v+y1w)+dx(ylv+y2w)]dv=Jp(xxb+dx.l)dv+f (xxt+dxm)da, |
dt Js 2 P
df
— p(e+x)dv=fp(r+b-o+l-w)du+f (tv+m w—h)da, J
dt s ? o

(2.6)

where dv is an element of volume and da is an element of area in the current configuration. The
first of (2.6) is a mathematical statement of conservation of mass, the second that of the linear
momentum, the third that of the director momentum, the fourth represents the conservation
of moment of momentum and the fifth is the law of conservation of energy.

As will become evident in §§4 and 5, we need to introduce additional balance laws which
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involve only scalar fields of the type 7", £, sV, k¥ introduced in the preceding paragraph. We
postpone (until §§4 and 5) the exact specification of the physical significance of these scalar
fields and for the moment regard these variables to be scalars having the same invariance
properties as the scalars 7, £ in (2.6); and other scalar variables occurring in the entropy
balance law of Green & Naghdi (19774, equation (2.3)), i.e. these scalars remain unaltered if
the medium is at any time subjected to a superposed rigid body translation and rigid body
rotation. With this background, for later use we now state a general balance law of the form

d pnVdv=| p(s"+E¥)dv—| K¥de (N=1,2,...,K). (2.1
dt)s ? e
It is clear that (2.7) represents N scalar balance laws. For K = 1, it will be identified later in
§4 with the balance of entropy utilized previously by Green & Naghdi (1977a4).

By usual procedures and under suitable continuity assumptions, it follows from (2.6), 5 ; and
2.7) that
&7 t=tn, m=mpn, h=gqn, F=p'n, ' (2.8)
where n, are the components of the outward unit normal n referred to a set of right-handed
orthonormal base vectors e, associated with a rectangular cartesian coordinate system and ¢,,
my, q,, pY are only functions of X ¢ independent of n. Referred to e,, the various coefficients of
n, in (2.8) may be expressed as ‘

t,=tye, m=mye, q=gqe, p"=pe, (2.9)

where ¢, are the components of the stress tensor, m; are the components of the director stress
(or the couple stress) tensor, ¢, are the components of the heat flux vector ¢,py are the
components of the flux vector p" associated with £, all Latin indices take the values 1, 2, 3
and summation over repeated Latin indices is understood.

With the use of the results (2.8) and (2.9), from the six equations in (2.6) and (2.7) follow
the local forms of the conservation laws, which can be displayed as

p+pdivo =0,
p(O+y, W) =pb+t, ,
Py, 0+y, W) =pl—k+m,, (2.10)

e, xt+d xm+dxk=0,
pé = pr—divg+P,

and pi¥ = p(s¥ +E¥)—divp®y, (N=1,2,..,K), (2.11)

where comma denotes partial differentiation, div stands for the divergence operator with
respect to the place x keeping ¢ fixed and the mechanical power P in (2.10); is defined by

P=t v, +m;w,+k-w=t +mw +kuw, (2.12)

It is desirable to indicate a procedure for the utilization of the balance laws (2.6) and (2.11)
for N=1,2,3, and the relevant constitutive equations for turbulent viscous fluids. We
postpone a description of such a procedure until the end of §5, but include here a few remarks
pertaining to invariance under superposed rigid body motions. We recall that as a consequence
of the motion specified by the vector functions y and £ the body occupies a configuration x
at time ¢; and, in this configuration, the place x and the director d at x are given by (2.1), ,.
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Under another motion, which differs from the given one only by a superposed rigid body
motion, the material point X and the director at X move, respectively, to x™ and d* in the
configuration k* at time ¢* = t+a, where a is a constant. It is well known that under such
superposed rigid body motions the place x* and the director d* at x™ are specified by

x"=a+Qx, d'=Qd, (2.13)

where a is a vector function of ¢ and Q is a proper orthogonal tensor function of ¢. The vector
a in (2.13), can be interpreted as a rigid body translation and Q as a rigid body rotation. Also
the specification (2.13), implies that the magnitude of d remains unchanged under superposed
rigid body motion (2.13),. For additional related background we refer to Green & Naghdi
(1979a) and to Naghdi (1972). Now, all conservation equations in (2.10) and (2.11) and the
various fields occurring in these equations are regarded to be properly invariant under
superposed rigid body motions (2.13) : for example, the scalar 7in (2.10), and the fields £, and ¢,
in (2.12) transform according to the formulae

1’+ =T, ki+ = Qim km’ ti-; = th an tmn’ (214)

where Q,; are the cartesian components of the proper orthogonal tensor Q. We may refer to
scalars, vectors or second-order tensors that obey transformations of the form (2.14) as objective;
but we emphasize that our use of the term objective differs from the corresponding usage by
some authors who appeal to the ‘principle of material frame-indifference’ and allow Q to be
any orthogonal tensor. (For additional related background and discussion see Green & Naghdi

(19794).)

3. DISCONTINUITY CONDITIONS

In the previous section no surface of discontinuity was admitted and the local forms (2.10)
and (2.11) of the conservation laws were deduced under usual continuity assumptions. In this
section we provide a brief derivation of the jump conditions across a surface of discontinuity,
associated with each of the six equations in (2.6) and (2.7), which include an extension of the
standard jump conditions in the three-dimensional theory. A similar extension, but using a
somewhat different approach, was carried out previously in the context of the theory of a
directed fluid sheet and was discussed with various degrees of generality in the papers of Caulk
(1976), Green & Naghdi (19775) and Naghdi & Rubin (1981). The extension just referred to
involves admitting a primitive notion that the surface of discontinuity itself can also act as a
source, thereby providing a supply term on the right-hand side of each of the balance laws in
(2.6) and (2.7).

Consider a surface of discontinuity X'(¢f) in the present configuration of # and let o(< X)),
with a closed boundary curve 0o, be an arbitrary portion of the surface of discontinuity
contained in the material part (< ). Let v be the unit normal to 2’ chosen in some specified
direction and denote by U the normal velocity of 2 in the direction of v. Then, the relative

velocity u of 2’ is defined by
u=uv-Uv. (3.1)

It is convenient to recall here the transport theorem which is needed in the derivation of the
desired jump conditions from the balance laws in (2.6) and (2.7). Thus, let ¢ be any function

28 . Vol. 327. A
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of position and time that takes on different values ¢, and ¢, on either side of X. Then, a
statement of the transport theorem is (see Truesdell & Toupin 1960, equation (192.4)):

ad—tngde = L (d+ ¢ divo) dv+£[¢u'v]da (3.2)

where we have used the notation [¢] = ¢, —¢,.

When the region £ contains a part o of the surface of discontinuity, for our derivation of the
extended version of the jump conditions, we need to admit a surface supply term to be added to
the right-hand side of each of the integral balance equations in (2.6) and (2.7). These surface
supply terms in the order of appearance of the integral balance laws (2.6), ; and (2.7) are:

J Mda, J Fda, f Lda, I Mda, J @da, J E¥ da, (3.3)

whose integrands in general require constitutive equations. In (3.3), the scalar A stands for the
surface mass supply, F and L are the ordinary and director surface momentum supplies,
M is the surface supply of moment of momentum, @ is the surface supply of energy and EV,
(N =1,2,...,K) are the surface supplies of the scalar quantities associated with (2.7), all per
unit area of the surface 2.

In order to illustrate the nature of the extended forms of the jump conditions, we include here
a brief derivation of the first two and then merely record the remaining jump conditions.
Consider first the extended version of the conservation of mass in the presence of the surface
supply term (3.3);. With the use of the transport theorem (3.2) and the definition (3.1), this

can be written as
J (p+pdivo) dv+f [pu-vlda = J Mda.
k4 I'd o

In view of (2.10),, the first term in the above expression vanishes and we are left with surface
integrals which hold for an arbitrary part 0. Hence, we may deduce that
[pu-v]= M, (3.4)

as the jump condition for mass at the surface of discontinuity. Again, with the use of the
transport theorem (3.2) and the divergence theorem, the balance of linear momentum in the
presence of surface supply term (3.3), may be reduced to

J {Pp(O+y, W)+ (p+pdivo) (v+y, w)}dv+f [pu-v(v+y,w)lda
4 I

= f? {pb+1t, }dv+ L [flda+ LFda.

In view of (2.10),, the last equation can be reduced to integrals which hold for an arbitrary

o and we may deduce the result
[ou-viv+y,w)—tf]=F, (3.5)

as the jump condition for momentum at the surface of discontinuity. The remaining jump
conditions can be derived similarly and are given by

lou-v(y,v+y,w)—m] =L, (3.6)
[dx{puv(y,v+y,w)—m}]=M—xxF, (3.7)
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[ple+)uv—t-v—m-w+q-vj=9o, (3.8)
eV (u-vy+pV-vj=E", (N=1,2,...,K). (3.9)

As noted earlier, the surface supply (or source) terms on the right-hand sides of the jump
conditions (3.4)—(3.9) in general must be specified by constitutive equations. Also, it should be
noted that for a directed medium with surface supplies at the surface of discontinuity, the jump
in moment of momentum (3.7) is not necessarily identically satisfied as is its counterpart in the
standard (classical) statements of jumps. In the special case that d is continuous across the
surface of discontinuity, with the help of (3.6), the jump in moment of momentum (3.7) reduces
t - '

° M=xxF+dxL. (3.10)
It is of interest to note that in the absence of surface supply terms F, L, and M, the jump in
moment of momentum requires that [d] =0, (3.11)

and hence d will be continuous in that case. Of course, if any one or more of the surface supply
terms F, L, M are non-zero, d may be either continuous or discontinuous across the surface
2.

In many physical problems, especially those involving interfaces between materials of
different microscopic structure, it is desirable to allow the director to be discontinuous across
a surface of discontinuity. Such a situation, which may give rise to a dilemma, justifies the
inclusion of surface supply terms in the general statements of the jump conditions. Moreover,
the various supply terms must be such that each of the jump conditions (3.4)—(3.9) are properly
invariant under superposed rigid body motions. This, in turn, places restrictions on the manner
of dependence of the constitutive response functions for the surface supply terms on the
independent variables of the particular flow field.

4. THERMODYNAMICAL BACKGROUND FOR THE CONTINUUM MODEL OF
TURBULENCE PROPOSED IN §5

In classical thermodynamics, temperature is regarded as a measure of the average deviation
of the molecular motion from the mean motion. Although molecular vibration is ‘hidden’ on
a macroscopic scale, its manifestation on the macroscopic scale alters the internal energy and
other dependent thermal variables. Such ‘hidden’ motions in a turbulent fluid occur both on
the small molecular scale and on the much larger scale of the turbulent eddies. Thus,
corresponding to these notions, we admit here two temperatures: a ‘thermal temperature’
0y and a ‘turbulent temperature’ 6, which, respectively, serve as measures of the hidden
motion on the molecular and the microscopic scales. Both of these temperatures are assumed to
be absolute; and, in particular, the vanishing of the turbulent temperature 6, implies the
cessation of a// turbulent motions.

Throughout this section and in the remainder of the paper, we attach a subscript H or T to
variables identified as ‘thermal’ or ‘turbulent’, respectively. Also, the tensor indices attached
to the vector- or tensor-valued components of such variables are systematically placed to the
right of either the subscript H or T.

In conjunction with the two temperature fields §; and 6, we admit two distinct entropies 7
and 9, associated with the thermal and turbulent motions, respectively. Recalling the balance

- 28-2
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laws (2.7), (N =1,2,...,K), we identify 9, with the scalar density '; and, as in the paper of
Green & Naghdi (19774a), introduce the thermal external rate of supply of entropy sy, the
thermal internal rate of supply of entropy £, the thermal entropy flux p;; and identify these
with corresponding quantities in (2.7) for N = 1. For the reader’s later convenience, we record
here a list of these identifications as follows:

U): y, sp=s, Ex=§&, pu=r" (4.1)

Similarly, we identify the turbulent entropy density 7, with %* in (2.7) and associated with this
admit the turbulent external rate of supply of entropy sy, the turbulent internal rate of entropy
&r, the turbulent entropy flux p, and identify these with corresponding quantities in (2.7) for
N =2 as follows:

Te=1"% sp=5 Ex=£, pr=p" (4.2)
Then, the local forms of the balance laws for thermal and turbulent entropies follow from
(2.11) for N =1,2 and are given by

Plig = Pp(su +Ex) —divpy, (4.3)
and Pz = p(sp+E&rp) —divpr, (4.4)

respectively.

We assume that the rate of heat supply 7 and the heat flux g, which occur in the energy
equation (2.10);, can be expressed as the sum of their respective thermal fields 7y, g5 and
turbulent fields 7, g so that

r=rp+ry, q=qutqr. (4.5)
We further assume that fields sy, py and s, pp in the entropy balance laws (2.7) for
N = 1,2, or equivalently (4.3) and (4.4), are related to the quantities in (4.5) by

'w = Onsu, qu = Oubu, (4.6)
and T = Op Sy, qp = OpPr. (4.7)

The definitions (4.6) and (4.7) parallel those employed in the procedure of Green & Naghdi
(1977 a, equations (2.2) and (2.5)). However, it should be noted that while 7y, 7, and gy, g5
are additive in accordance with (4.5), 5, the remaining thermal and turbulent fields in (4.3)
and (4.4) are not additive and represent independent quantities.

The energy equation (2.10); was obtained from the balance of energy (2.6); after the
elimination of the body force b and the director body force I with the help of the local equations
(2.10), 5. A further reduced form of the energy equation can now be obtained by multiplying
(4.3) by 0y and (4.4) by 6, and with the use of (4.5), , subtracting the result from (2.6);.
This leads to the following reduced energy equation

POty + Oy 1y —€) = p(Opbr+O0uEx) +Pr 8o+ Pu &u— P, (4.8)

where the mechanical power P is defined by (2.12) and the thermal and turbulent temperature

gradients are defined by
gx = grad by, gr=gradby, (4.9)

respectively. In terms of a Helmholtz free energy ¢ defined by

Y =€e—0unug—0rp9y, (4.10)
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the reduced energy equation (4.8) may be written in the alternative form

P(%"”?]Hén'*"hé'r) +P(0Hgn+0§€T) ‘*“PH'&I"‘PE'QT‘P =0. (4-11>

According to the procedure indicated at the end of the next section, the reduced energy

equation (4.11) will be regarded as an identity for every choice of the independent variables

v, W, Oy, 0;. Then, the two balance equations (4.3) and (4.4) will be used as the equations for
the determination of the temperature fields 6, 6;.

5. A MODEL OF TURBULENT FLOW

A model for turbulence is adopted here which incorporates several significant observations
made by Townsend (1956, 1976). (Direct quotations of Townsend’s observations and related
statements by other researchers are listed in Appendix A.) The model is based on the
assumptions that ‘ ' '

(1) many macroscopic features of the flow are controlled by a set of large eddies, or vortices,
on the microscopic level; and "

(2) the axial vorticity vectors of these eddies tend to align themselves along the particular
principal direction of the rate of deformation tensor (calculated from the macroscopic velocity
gradient) along which direction the associated eigenvalue (the rate of logarithmic stretch) is
maximum. :

The rate of deformation tensor 4 (with cartesian components 4,;) and the vorticity tensor
W (with cartesian components W) calculated from the macroscopic velocity gradient L are
defined here in the usual way by

L =gradv=1y,,e,®e, _
A=A4,e,Q¢, W=W,eQe, (6.1)
Ay = %(vt.j'i'vj,t)’ Wy= %(”i.j*”j,t)’

where the grad stands for the gradient operator with respect to the place x keeping ¢ fixed and
the symbol ® denotes tensor product. (The use of the symbol 4 for the rate of the deformation
tensor here, instead of the more customary symbol D (with cartesian components d,;), is to
avoid possible confusion with the notation for the reference value of the director introduced in
§2 and the components d, ; of the director gradient in such expressions as (5.33).)

Consider now a particular turbulent flow where the velocity, on the macroscopic scale,
vanishes for all times and the thermal temperature 65 and the mass density p are constant. In
order to properly describe the decay of the turbulent fluctuations into thermal heat, as well as
other processes occurring in such a flow, an additional scalar parameter is needed in
conjunction with the turbulent temperature €5, which is associated in some way with the
typical length scale of the class of eddies containing most of the kinetic energy of the
microscopic turbulent fluctuations. Examples of such a parameter are the ‘mixing length’ of
Prandtl (1925), the ‘turbulent dissipation’ of Launder et al. (1975), and the  pseudo-vorticity’
of Saffman (1970). Rather than using any of the above variables, we introduce an‘eddy
density’ py representing the number of eddies of the aforementioned class per unit volume. A
well-known relation in the kinetic theory of gases states that the mean free path is inversely
proportional to the number of molecules per unit volume and a similar (although not identical)
relation can be assumed to exist between the ‘mixing length’ and the eddy density py. If the
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use of one of the other previously mentioned variables is desired, however, the eddy density can
be replaced by this other variable without difficulty.

A balance law for eddy density may be stated by assuming that the time rate of change of
eddy density within a material volume in the current configuration is equal to the rate of supply
of eddies within that volume, or

d
dt prdv —J Epdy, (6.2)

where £ is the rate of supply of eddies per unit volume. Then, under the usual continuity
assumptions, the local form of (5.2) is

Petpevy = e (5.3)

Clearly, when the number of eddies is conserved within a material volume, £; vanishes and
(5.3) has the same form as the local conservation of mass. It may be observed that (5.3) can
be obtained as a special case of the balance law for additional scalar variables (2.7) with the
‘identification
pe=p1" Ex=pE+s), p*=0,

and after using the local conservation of mass (2.10),. By not admitting a flux of eddies in
equation (5.2) it is implicitly implied that the eddy centres have the same velocity as the
macroscopic velocity. Although this assumption may not always be completely justified, it
represents a reasonable approximation when the gradient in eddy density is gradual along the
flow direction. An alternative approach is to assign a velocity to the eddy centres which is not
necessarily the same as the macroscopic velocity v and express the eddy flux as proportional
to the difference of these velocities. Developments similar to this, involving relative velocities,
are commonly used in mixture theories with two or more constituents (see, for example, Green
& Naghdi 1978). However, the latter approzich unnecessarily complicates the analysis; and for
the present, we adopt the simple form (5.2) for the balance of the eddy density.

For certain turbulent flows with uniform velocity it has been observed that the diagonal
components of the stress tensor #, are not necessarily equal. This phenomena is commonly
associated with flow ‘anisotropy’ in the literature (see Townsend 1976). This effect is regarded
here to be caused by preferential orientation of large eddies; and, in this connection, we now
admit a single director d as an additional kinematical ingredient. The director, on a
macroscopic level, is associated both with the extent of alignment of the large eddies (as
discussed under (2) in the opening paragraph of this section) and with the microscopic vorticity
enhancement of these aligned eddies. (Such vorticity enhancement effects on the microscopic
level due to continuous straining in the macroscopic flow field are commonly referred to as
‘vortex stretching’ in the literature.) We denote by a® the unit principal direction of the rate
of deformation tensor A, with which is associated the maximum rate of (macroscopic)
logarithmic stretch ¢‘®. It is already indicated in §2 that the director d is assumed to have the
physical dimension of length. Prior to specification of additional properties of the director d,
it is helpful to discuss the effects of certain microscopic flow features on the macroscopic
‘anisotropy.’ In particular, an increase in the ‘anisotropy’ of the macroscopic flow is thought
to be caused at the microscopic level either by vortex ‘stretching’, with an accompanying
increase in the vorticity of the aligned eddies, or by an increase in the number of aligned eddies
in a given fluid volume. Moreover, it is assumed here that the macroscopic ‘anisotropy’
vanishes when either the vortex ‘stretching’ or the number of aligned eddies vanishes. In light
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of this background and in the context of turbulent flow, we now specify the following additional
properties for d:

(i) the magnitude of d is proportional to the difference in magnitude of the)
microscopic vorticity vectors of the aligned and unaligned eddies times the ratio of
number of large aligned eddies to total number of large eddies at a given (macroscopic) ‘
material point; and (5.4)

(ii) the direction of d is identified with the principal direction a®, where (in accord
with (2) of the model description) a® has the same direction as that along which the
axes of the large eddies tend to become aligned.

To determine the desired kinematical properties associated with the rate of deformation of
an arbitrary material line element, consider three mutually orthogonal material line elements
which are identified as dx,, in the current configuration and as dX,, in the fixed reference
configuration, where

dx,, = FdX,,(M = 1,2,3), (6.5)
and F is the deformation gradient defined in §2. Let the magnitude of dX,, and dx,, be
denoted by dS,, and ds,,, respectively, and introduce the unit vectors M,, in the direction
of dX,, and the unit vectors m,, in the direction of dx,,. In general, the line elements dX,,
undergo both stretch and rotation and the ratios (ds,/dS;, ds,/dS,, ds;/dS;) denoted by
Ay (M =1,2,3) are called the stretch of the line elements. (The temporary notation for
the unit vectors m,, = (m,, m,, m,) between (5.6)—(5.9) of this section need not cause confusion
with the use of the symbols m and m, for a different purpose in the conservation equations
(2.6) and (2.10).) The above observations may be summarized as

dX, = M, dS,, dx, =my,dsy, A, =dsy/dS, (nosumonM).  (5.6)
Substitution of (5.6), , into (5.5) and use of (5.6), results in
Aymy, = FM, (nosum on M), (6.7)
whose material derivative after dividing by A,,(M = 1,2,3) may be expressed as
(Ayr/Ay) My +1ity, = Lmy, = (A+W)m,, (no sum on M), (5.8)

where the velocity gradient L and the second order tensors 4 and W are defined by (5.1). After

taking the scalar product of (5.8) with m,, and observing that m,,-m,, = 0 since m,, is a unit

vector, we obtain ,
Ape/Ay = d/di(InA,,) = Am,,-m,, (no sum on M), (5.9)

where the left-hand side of (5.9) represents the rate of logarithmic stretch.

Because 4 is a real-valued symmetric tensor, it possesses three mutually orthogonal and
linearly independent unit principal directions a' and associated principal values ¢,
(t=1,2,3) such that

Ad' = ¢%a', a'-a’ =4, (5.10)

where §,; stands for Kronecker delta and the parentheses around an index signifies suspension
of the summation convention. (Although all vectors and tensors in this paper are referred to
rectangular cartesian coordinates with orthonormal basis e, as in (5.4) and (5.10), for
convenience we consistently employ superscripts to distinguish between the unit principal
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directions (a',a? a®) and associated principal values (¢, ¢®, ¢®).) The scalar product of
(6.10), with each of @', after using (5.10),, gives

¢® = Aa*-a’ (no sum on i). (5.11)

Identifying the arbitrary unit vector m, with the unit principal direction a', we find from (5.8),
(6.9), and (5.11) that

o _ A (A\® :
¥ = L=\ (no sum on i) (5.12)
1
. V\ @
and da' = La‘—(%) @' (no sum on ). (56.13)

Let @ denote the axial vector associated with the vorticity tensor W so that, for any vector V,
WV = o x V. Then, with the use of (5.10), and (5.12), it follows from (5.8) that

i'= Wa'=oxd, (5.14)

i.e. the axial vector @ is the angular velocity of line elements which are parallel to the principal
directions a'. _

We now recall the property (ii) listed in (5.4). Because d is parallel to the unit principal
direction a® and because a® is orthogonal to the unit principal directions a% (¢ = 1,2), the
constraint on the director alignment can be stated as ’

d=da®, a*d=0 (a=1,2). (5.15)
Differentiating (5.15), with respect to time gives
ad+a*w=0. (56.16)

From (5.13) and (5.15) d*d = La*-d, so that (5.16) can be written as

d-La*+aw=0 (56.17)

or in component form as -
diafv, ;+aiw, =0 (ax=1,2), (5.18)
where a' = de,. (5.19)

(A discussion of constraints for a directed medium with a single director is included in Green
et al. (1970, §6). The development between (5.15) and (5.23) is analogous to that of a similar
constrained theory carried out in a different context by Naghdi (1982, §6.2), where additional
references on the subject can be found.)

For the constrained theory under discussion, we assume that each of the response functions
t,, my, and k, are determined to within an additive constraint response By ﬁ,j, and £, so

that o _ . A

where f,, 1,, and /2, are to be specified by constitutive equations and the constraint responses
which are workless are independent of the kinematical variables (v, ;,w,w,,;) and are only
arbitrary functions of x, ¢ Thus, recalling the expression (2.12) for mechanical power, we

have _
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Multiplying the two director alignment constraints in (5.18) by the Lagrange multipliers g*
and subtracting from (5.21) gives

From (5.22) and the fact that ,, £, and i, are independent of v, ,, w,, and w, ,, it follows
that : ) '
by=2p4dqa, k=2Xp4 m=0 (a=1,2). (5.23)

It can be easily verified that the constraint responses (5.23) satisfy the moment of momentum
equation (2.10), identically. AR ~
The ordinary and director momentum equations (2.10), ; with the use of (5.23) can be

written as . ‘
Pty ) = Pb¢+tu,j+2 (B4, a;‘) 42 (5.24)

p(y ‘51+!/.2‘“"z) =pli_£i+’ﬁij,j_2ﬂaa:‘ (5.25)

It is convenient to introduce here the temporary abbreviations

A

by = b;— (d,+y, ), f‘=l,—(y1v',+y2u'),). (5.26)
Then, after multiplying (5.25) by 4, and using (5.10), and (5.15),, we have

plyd,—k d,+d,rhy, ;= 0, (5.27)

where we have also used (5.26),. Combining (5.24) and (5.25) and using (5.26) we obtain
0= pb,+6;j{t,,+ d[—k+ply+ 1y ]} (5.28)

Because d; = da} by (5.15),, it is clear that the system of equations (5.27) and (5.28) represent
a set of four equations for the determination of four primary unknowns 4 and v,. -
For later reference, we introduce here alternative kinematical variables #, and k,; defined
by
hy=w—Wyd, hy=w, ,—W,d,, (5.29)

both of which can be easily shown to be properly invariant under superposed rigid body
motions. Also, with the help of (5.29),, the components of the material time derivative of the
director gradient can be expressed as

d—l.; = kt:l+ Wik @e,s— Vi3 4 - (5.30)

As promised in §2, we now describe a procedure for the utilization of the balance equations
(2.10) and (2.11) and the constitutive equations for the turbulent viscous fluids to be
introduced in §6. In this connection, we note that the local conservation laws (2.10), the
thermal and turbulent entropy balance laws (4.3) and (4.4) and the balance of eddies (5.3)
involve a set of 19 functions. These consist of the two velocities v and w defined by (2.2), ,, or.
the two functions y and £ in (2.1), ,, and the two temperature-like variables 6 and 6,

29 Vol. 327. A
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(introduced in §4) as the independent variables; and the various thermomechanical fieldst,
namely

{tjimu, k3 and  {Y, Py, M Puos Pros € Emo €6 (6.31)
as well as {bss ;s Se15 510} (5.32)

We assume that the fields (5.31) are specified by constitutive equations which may depend on
the kinematical variables y, 2 and the temperatures 6,; and 6,, their space and time
derivatives, as well as the whole history of these variables. Then, following Green & Naghdi
(1977 a), we adopt the following procedure in using the balance laws:

(1) the field equations are assumed to hold for an arbitrary choice of the functions v, w (or
X, 2), Oy and 6 including, if required, any arbitrary choice of the space and time derivatives
of these functions;

(2) the fields (5.31) are calculated from their respective constitutive equations;

(3) the values of the fields (5.32) can then be found from the balances of linear and director
momentum (2.10), ; and the entropy balance laws (4.3) and (4.4); and

(4) the equation resulting from the balance of moment of momentum (2.10), and the
reduced energy equation (4.11) (resulting from the balance of energy), will be regarded as
identities for every choice of the kinematical variables (2.1), or the corresponding velocities
(2.2), and the temperatures 6y, 6 identified in §4. These equations will then place restrictions
on the constitutive equations. Also, as should be evident from the development in §4, the
thermal and turbulent entropy balance laws (4.3) and (4.4) will be used as the equations for
the determination of the temperature fields 6y, ;.

It should be clear that with the help of (2.9), , the component forms of the equations of
motion (2.10), ; , can be easily expressed in terms of the stress tensor £, the director stress
m,, and the components of other fields (referred to the basis ¢,) in these equations. Moreover,
in view of the procedure discussed in the preceding paragraph (see item (4)) it follows from the
local conservation of moment of momentum (2.10), that the skew-symmetric part of the
Cauchy stress tensor £, is given by

lyg = %(dj,kmtk_dl,kmjk+dj ki—dky), (5.33)

and we only need to require constitutive equations for the symmetric part ¢, of the Cauchy
stress tensor in (5.31).

6. CONSTITUTIVE EQUATIONS FOR TURBULENT VISCOUS FLUIDS

The determinate parts of the constitutive responses in the constrained theory of §5,

namely P
' bagys his tiggs (6.1)
as well as the thermal and turbulent constitutive responses
¥, Mers U x> € Pros s € (6.2)
are assumed to depend on the current values of the set of independent variables
Vo = (p, PE> BH) 0’1‘, di, dt.j)a (63)

T The mass density p is not included in (5.31) because it can be calculated from (2.10),. Similarly, the eddy
density pg introduced in (5.2) need not be included in the list (5.31). ’ :
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as well as the rate quantities ,
Y11= (4y ky) (6.4)

and the thermal and turbulent temperature gradients and turbulent temperature rate
¥ = (8no 8o é'r), (6.5)

where 4,; and &, are defined by (6.1), and (5.29),. As will become apparent later in this section,
the inclusion of @, in the set of independent variables (6.5) is necessary to properly describe the
rate of eddy supply £ per unit volume. Thus for example, the constitutive assumption of the
specific Helmholtz free energy reads as

Y= '/;('Vm Y72 (6.6)

where for clarity in the immediate discussion that follows (between (6.6) and (6.9)) we have
temporarily distinguished between a function and its value by writing ¥ (instead of just ¢) for
the response function on the right-hand side of (6.6). Statements similar to (6.6) hold for all
other variables in (6.1) and (6.2).

It should be recalled here that the reduced energy equatlon (4.11) has been obtained from
the energy equation (2.6); after the elimination of the external body force b (in the form
(2.10);) and the external supplies of entropy through the definitions (4.6), and (4.7),. Further,
in accordance with the procedure of Green & Naghdi (1977), the reduced energy equation
(4.11) is to be regarded as an identity for all processes provided the external body force b, the
external director body force ! and the external supplies of entropy s; and s, are chosen so as
to satisfy the balance of linear momentum (2.10),, the balance of director momentum
(2.10), and the entropy balance equations (4.3) and (4.4). This procedure of restrictions on the
constitutive assumption regarding the reduced energy equation (4.11) as an identity places
restrictions on the original constitutive equations; and, as will become evident presently,
reduces the number of response functions. In addition, all constitutive equations must remain
invariant under arbitrary superposed rigid body motions. Given appropriate constitutive
equations, the complete solution of a turbulent boundary value problem must satisfy the
consequences of the conservation of mass (2.10),, the conservation of the linear and director
momentum (2.10), s, the thermal and turbulent entropy balance laws (4.3) and (4.4), the eddy
density balance law (5.3), and the director alignment constraint (5.15). As noted in §2, the
inertia coefficients y, and y, also require constitutive equations.

The material time derivative of the Helmholtz free energy ¥ is

V= a"0Ai,+a¢h+a'/'h+a'/'h awd A,

04, ok, od, od, 4 0d, ;
o, , W K ) . W
(add+ad‘kdfk od, , 37, M/;1+app+ap PE
0 0 0 J )
aéﬁ !l’ agf 0 + o gT‘+agﬁ Euups , (6.7)

29-2


http://rsta.royalsocietypublishing.org/

JA \
¥y N

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

434 J.S . MARSHALL AND P. M. NAGHDI

where we have also used (5.29), , and (5.30). Substituting (6.7) into the reduced energy
equation (4.11) and using the mass conservation. equation (2.10), and the eddy balance
equation (5.3) to eliminate p and py we obtain

aw aw % a% ) )
[(Ppmaw +p* ¢)311+Pad¢ dk,t+fij]Atj

p dp

o, o, o
”(add+ad bxt g, s | W

) d
+p(a;0+nn)0 +p(ag+%)0 +;oag67 +pa¢gm

%, . 0
.+pa_¢’_gw+p-aL/f-§E+pt9H§H+p9T§T+lhfgm
e - e

+prifr =0 - | | . . (6'8)

Because (6.8) is linear in the variables 4, A, hy, Wy, Oy, Ox, gxy, €r,, with coefficients which
are independent of these variables, we may conclude that

o o _op o _ o _,
aAu Oh,  Ogry  Ogm —5;

and hence ' U=y, o - (6.9)

where ¥ on the right-hand side of (6.9) is now a different function from that in (6.6). Given
the result (6.9), we further conclude from (6.8) that

L g g
Tateg, =" T =Pe,

W, Y, LY o, oy
3% "3, kd, 8, =8, L tad,, x Vg, o

(6.10)

and

0 " 'ﬁ ) -
( E):zﬁ't k)h [(PPEa pzap)aﬂ"'padlﬁ dk;t+ti1]AiJ
oy ; oy
+p E+’7T 0T+p9HgH+P‘9T§T+P$;§E+ngm+[)ngw=0. (6.11)

To avoid unnecessary complications in the discussion of the constitutive equations, in the rest
of this section we specialize further the constitutive assumptions introduced earlier (in the
paragraph containing (6.6)). Keeping in mind the constitutive results (6.9) and (6.10), we
consider a special case in which the various response functions are either linear or quadratic
in the rate variables (6.4) and possibly also linear or quadratic in the variables (6.5), but with
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coefficients which may depend on the set of variables (6.3). Given the constitutive results
(6.10), ,, we now assume that:

fyy and Ic are linear in (6.4); , )
P, is linear in gy, and vanishes when gy, = 0

Py is linear in gq, and vanishes when gy, = O -
&5 is quadratic i in (6.4) and &uis i (6.12)
£, is quadratic in (6.4) and gq,; ‘

£ is linear in (6.4) and 6;; and ‘

%, is independent of the variables (6.4) and (6.5).)

It should be emphasized that the constitutive assumptions (6.12),_, are compatible with the
remaining assumptions in (6.12) and that at this stage in our development the various
coefficients for the responses (6.12) depend on the variables (6.3). Moreover, these response
functions must be such that (i) the reduced energy equation (6.11) is satisfied identically for
all motions and (ii) the forms of the constitutive coefficients in the various constitutive
equations properly satisfy the invariance requirements under superposed rigid body motions.

We now introduce further simplifying assumptions in that all response coefficients in the
constitutive assumptions (6.12), except those for 7, are quadratic in d;, and that those
coefficients which are not multiplied by one or more of the rate quantities (6.4) or the variables
(6.5) are also linear in the director gradient d, ;. In the light of all previous assumptions and
consistent with the use of the reduced energy equation (6.11) as ‘an identity for all
thermomechanical processes, the response coefficients for 7, must necessarily be linear in 4, ,
and quartic in d; (in the form d, d, d; d;). With these additional assumptxons, the various response
coefficients depend only on the set of variables

U = (p, pg, Oz, O), o _ (6.13)

instead of (6.3). With the use of invariance requirements under superposed rigid body motions
and after observing that all quantities in (6.1)—(6.5) are objective, it can be shown that the
various coefficients in (6.12) and the free energy ¥ must be hemitropic functions of their
arguments. For our present purpose, however, it will suffice to require that i and these
coefficients are only isotropic functions. With the latter simplification, the final forms of the
constitutive results are as follows:

¥ = ¢0+¢ldt,t+¢2didl’ o ; (6.14)
o o ’
me - mtndd),  (619)
£y = vyd,+ vy byt vy dydy byt v, d, d;h +2v4d Ag+vyd Ay, (6.16)

t(u) l‘o‘su"'/"l‘stjdz l+ﬂz(d¢ j+dj ) +I"s‘sud di+p,d,d,
+psd,dh +ﬂ6(d b+ d, k)
+pq 8y Ay +2p4 Au"‘ﬂs 0ydud, d, +ﬂ10 ‘sud d, Alm o
+.“nd dAy+2p,dydy Ay + 24, dy,(d, A +diAyy,), o (6.17)

; d d e
fin = W(ad‘/, dy = af )2(v1+v2dd)(dh —dh) +v,d(d, Ay —d, 4,),  (6.18)
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bri = — (Ko + kK, d,d) gyys (6.19)
i =—Ao+2,4d,d) grys (6.20)
£e = (Yo+71d,d) O+ Vo d b+ ys Ay+y, dyd, Ay+y5dyd, 4, (6.21)

En =G+ d, +.d 4, +P%H (Ko+ Ky dydy) g1y 83
+@sdih+ (P + e dyd) Ay+ Py didy Ay + (@10 + S11dy dy) By
+@didih b+ Gi3dih Ay +2¢,,d b Ay
+ (P15t Predndy) Ay Ay+2(P1,+ e did)) A4y Ay +2¢,,d,d; 4, 4y
+4Pyd, 4y Ay 4y, - (6.22)
and
Oy, 1
fr=—2"(Po+¢: d,, i+¢2 dyd;) +E [Ao+A,d,d)] gri 8

B ot

, [ aw' oy, 1
+ (Pe—"7s— '}'4dd)ap +Pap p(ﬂo+/‘1dz,t+/‘ad1dz)
- ¢7+¢sdd) An :
0 1 0
+ afd 42 @+ i ded) 7o e did— O] 4,

=+

204 d) =00+ S i) |
FV 11
‘/;'—0H¢12 dyd;hh +0 = (vstps) —OuPrs|di Ay
_; (V4 + p6) — On ¢14] dh A4,

= (p7t 1o d,d) — O (P15 + P16 4y dz)]AuAﬂ
(i g )= OB+ 104 | 4, 4,
(10t #11) — 204 ¢19] d, d1 Au 4y

,; H¢2o]did Aoy (6.23)

+ o+ o+
?l*?l““?ll\’?l“?lw..,'&I'-?I"‘-?f"‘??h*.§°|"‘.§°
r
| -

+  +
“g'cl»-“bl»—“a

+

The coeficients in (6.14)—(6.23), which represent response (or material) coefficients, depend
only on the variables (6.13). Any subset of these coefficients may be taken to be zero without
violating the restrictions imposed by the satisfaction of the moment of momentum equation, the
reduced energy equation or the invariance requirements under superposed rigid body motions.
The expression (6.15) follows from the fact that, given the assumptions (6.12), the reduced
energy equation (6.11) holds for arbitrary values of ;. It may be observed that when the
second term on the right-hand side of (6.15) vanishes, then 7, will have the same form as the
more standard result (6.10),. Further simplification of (6.14)—(6.23) to the case of (rate-
independent) inviscid flow, which would be appropriate for sufficiently intense turbulence, is
discussed in §8. It should also be noted that in the absence of turbulence (pg =0, =0,
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d =0) and apart from the presence of thermal effects (involving the temperature 6y), a number
of constitutive equations such as those for py, &1, £5 and the expression for the anti-symmetric
stress tensor #,; vanish identically; and, then the remaining constitutive equations together
with appropriate balance laws in (2.10) can be combined to yield the standard Navier-Stokes
equations. » » -

A number of important aspects of the constitutive results (6.14)—(6.23) require separate
extensive studies and will be dealt with in the future. These studies pertain to possible
additional restrictions on the response coefficients, which may arise from appropriate
statements on the Second Law of Thermodynamics or some modification of this law
appropriate to turbulent flow, as well as the identification of the various response coefficients
(beyond those of ordinary viscosity or conductivity coefficients) in the turbulent regime.

In the case of an incompressible fluid, we need to consider the additional constraint

0y4,=0. (6.24)
The stress tensor ¢, can then be decomposed as
ty = Ily+ b5+, (6.25)

where as in (5.20), the constraint response #; is caused by the director alignment constraint
(5.15), f; is the response arising from the incompressibility constraint (6.24), and now i, stands
for the determinate part of the response which requires constitutive equations. The form
(6.23), for £, remains unchanged for an incompressible material and by a standard argument

we have h = —pd,, o (6.26)

where p = p(x,t) is a Lagrange multiplier. , :

As to be expected, some of the constitutive equations for 1ncompressxblc turbulent viscous
fluids assume simpler structure relative to those in (6.14)—(6.23). Before indicating the nature
of this simple structure, we observe that the constraint of incompressibility (6.24) does not
affect several of the equations obtained for the compressible case, namely equations (6.14),
(6.15) and (6.18)—(6.20). Again because of (6.24), a number of terms in the remaining
equations which contain the scalar 4,, vanish identically. Moreover, in the expression for the
stress tensor certain scalar multiples of d,, such as

84] dl 4] 8!1 d dD

can now be absorbed into the Lagrangc multlpher b, which is an arbitrary function of posmon
and time. In the interest of brevity, we do not record here the complete system of constitutive
equations for the incompressible fluid, but note that those which are affected by the
incompressibility condition (6.24) may also be obtained by suppressing the effects of terms
involving the following coefficients in (6.14)—(6.23):

Y3 Ve Ve (6.27)

¢7, ¢8) ¢13) ¢15’ ¢16’ ¢19

In particular, for the mcomprcss1ble fluid the expression corresponding to (6 17) of the
compressible case is

"/’%"’iv(u) = ’P8¢j+ﬂz(d s+d;,) +/‘4d ) +l‘s(d h +d k) : ‘ ‘
+2ug Ay + 2,u12 dd A,, +2py5d,,(d; Ay, + d A,m) (6.28)

Hos Has 3, l‘a; Has Hgs Paos /‘w}
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It should be noted that of the two equations of motion (5.27) and (5.28), the first remains intact
for the incompressible fluid but in the second #,, must be replaced by the expression (6.28).
There is a school of turbulence theory, which purports the notion that ¢, must remain
symmetric for turbulent flow. This claim is usually based upon an estimate of the ‘mean’ stress
by integrating certain terms in the Navier-Stokes equations over appropriately defined
volumes or time intervals. This estimate of ‘mean’ stress is then identified with the macroscopic
stress. The symmetry properties of the stress tensor thus obtained depends upon the form of the
weighting function used in' this integration. Usually this weighting function is assumed to be
one and the resulting stress tensor is then symmetric, as in Tennekes & Lumley (1972, p. 32).
Such a choice may give reasonable approximate results in many instances, but it cannot be a
basis of general validity due to the previously mentioned differences between the macroscopic
flow, as defined here, and the standard ‘mean’ flow. However, if it is desired to invoke the
symmetry of the stress, in the context of the present theory it can be accommodated by simply

setting
Y/od,, =0, vi=v,=v,=0. ' ’ (6.29)

7 TURBULENT—NON-TURBULENT INTERFACES

-~ The jump condmons across an interface separating a turbulent fluid and a non-turbulent
material (such as a laminar fluid or an elastic medium) can be obtained as a special case of the
discontinuity conditions derived in §3. Drastic changes in the flow rates and flow structure, on
a microscopic scale, are observed to occur very close to these interfaces (Clauser 1956, p. 6).
For the macroscopic theory of the present paper, regions of rapid change adjacent to an
interface are considered as part of the interface and manifest themselves through the surface
supply terms introduced in §3. Setting the mass supply M equal to zero in (3.4), the relevant
jump conditions across a surface of discontinuity in a turbulent flow which follow from
(3.4)—(3.9) consist of - '

[ou-v]=0, [(pyuu+py) Vl=Ey, [(o9cu+pg)vl=E; [pguvi=Mg = (1.1)

as well as the four jump conditions (3.5)—(3. 8) w1thout change, where the surface supply terms
on the right-hand sides of (7.1), 4 4 correspond to EY in (3.9) for N = 1,2,3 (1 e.)

E =E, E,=F, My=E. '_ ‘ (7.2)

In certain instances, many of the other surface supply terms may also be set to zero. However,
because it is desirable to allow the director d to be discontinuous across an interface separating
a turbulent fluid and a non-turbulent material, it may be too restrictive to set F, L, and M all
equal to zero. ‘ "

We now proceed to obtain a set of jump conditions appropriate for turbulent-non-turbulent
interfaces by incorporating into the general jump conditions the requirement that the effect of
01, pE, d in all constitutive response functions must vanish on the non-turbulent side of the
interface. Thus, in line with the notation introduced following (3.2), let the value of any
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function ¢ be denoted as ¢, on the turbulent side and as ¢, on the non-turbulent side of the
interface. Then the eight jump conditions (7.1),, (3.5)—(3.8) and (7.1), 5 , reduce to:

(pu-v), = (pu-v),, o )
[(pu)e V] [V, — vy + (4, W)o] — (f,— 1) = F,

[(pu)e V] (1,0 +y,w),—m, =L,

(dxL),=M-—xxF,
(Pu)z"’[[e"";""'v]"'(!Il'-"w"‘%yzw'w)z]"[t'v]"(m'w)z"'[QH'V}"‘(q'r"’)a=¢,
(pu) g el +pu vl = E

(puviz)e+ (Pr*v), = En,

(pgt)y v = Mpg. )

 (7.3)

8. THE INVISCID THEORY OF TURBULENCE

We specialize in this section the constitutive theory of §§5 and 6 to an idealized case of a
(rate-independent) inviscid turbulent fluid. The designation ‘inviscid’ here is intended to
imply only that the dependence of all response functions on the rate-type kinematical variables
Ay, kyy and hy; is suppressed ; the dependence on the rate of turbulent temperature 6., however,
is retained. The fluid is, of course, considered to be inviscid only on the macroscopic scale, so
that viscous dissipation of the turbulent fluctuations is still assumed to occur on the microscopic
level. _

The appropriate constitutive equations for an inviscid turbulent fluid, which follow from
various results in (6.9)—(6.11) and (5.33), may be written as

o, L W
kljpad‘) 1y —pad ) }
. ¥ a'ﬁ oy oy
tap = (Ppnap +p? ap 8y—12p ad ¢ adk"dlc_j ‘ (8.1)
oy, oY, oy a!/f )
£ di—=—d;+——d ,
= (ad od, 7 8, kT2, )
and
b = Pogm, pri=F'gr, Ex=H ar,\
— 0_ 1 . ’
gH =E poﬂp 8ui8ui> r (82)
_ Ox,0_ 1
€y = 0TE —p0 F° &ri 81y )

The specific Helmholtz free energy ¥ in (8.1) and the coefficients P°, F°, H® and E® in (8.2)
depend on the set of variables (6.3). These response coefficients are restricted only by the
invariance conditions under superposed rigid body motions; however, the free energy ¥ must
satisfy equation (6.10), as well.

We consider now the special case discussed in §6 in which ¢ and E° are assumed to be linear

30 Vol. 327. A
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in d; ; and quadratic in d;, while F°, H® and P° are assumed to be only quadratic in 4,. The
invariance conditions and the restriction (6.10), then demand that

U =yo+¥.d, t+¥.4dd, HO—'}’0+.71‘1¢‘11,
P =—kKko—kK,d,d;, F'=—2A,—A,4d,d,

¢0+¢ldf i+¢2d di)
where the coefficients on the right-hand sides of (8.3), ; are functions of the variables (6.13).

Substituting (8.3) into (8.1) and (8.2), the constitutive equations for a compressible inviscid
turbulent fluid reduce to

(8.3)

I;t = 2py, d, ’ﬁu = py, 0, >

p oy
by = (PPE a;)k "‘P2 3p tj“P'(’l a4
pui=— (Ko + K18y d)) 8uyy P = — (Ae+ 2, d;d;) gy

e = (Yot+714id;) bn, ' } (8.4)

gH = (¢o+¢1 dt ¢+¢2 a’, dl') + (Ko +x, dj dj) gHiinf,

§T=_—‘ ¢0+¢1dtt+¢2dd + (A +4, dd)g::égw J

and we note that for an incompressible fluid (8.4); must be replaced by
th+iy=—pSy—pY.d; (8.5)

where p = p(x,t) is a Lagrange multiplier.
With the use of the constitutive relations (8.3), and (8.4), the governing equations for a
compressible inviscid turbulent fluid can be displayed as

o,
”+”a =0, (8.6)

. . 0
p(di+y, 1) = pb—7- (ppE 3 ;0 +p? a"z)

s (S g 2o ptn || 6)

0
Py 0ty ) dy = plydi+ - (P'ﬁl) d —2py, d,d,, (8.8)
. O, :
PE +pEa_x‘ = (Yo+ 714, 4;) On, (8.9)

. ﬂ % % 1 00y 00y
P’?H—Psn+axt[(’<o+’<1dzdz) ax‘]+”(¢°+¢lax‘+¢2d‘d‘) 0 (Kot Ky dydy) — ox, ax, , (8.10)

D 0] pOs o, 1 30,00
Plix = psu+7 [(/\ +2,d,4) 5 4] 7 (¢0+¢laxl+¢2did,)+0T(/\ +hdd)FISE (B.11)
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Also, the entropies 7y and 7, are given by (6.10), and (6.15), respectively. Equations
(8.6)—(8.11) represent, respectively, the consequences of the conservation of mass, the
conservation of (classical) linear momentum, the conservation of director momentum, the
balance of eddy density, the balance of thermal entropy and the balance of turbulent entropy.
The coefficients ¥, ¥, and ¥, and the various coefficients y,, y,,... @, ¢,, @, on the right-hand
sides of (8.9)—(8.11) are functions of the variables (6.13). (We do not consider here restrictions
on these coefficients which may result from Second Law type statements.)

The governing equations for incompressible inviscid turbulence are identical to the system
(8.6)—(8.11) with the following changes: :

(1) the mass conservation equation (8.6) is satisfied identically by the incompressibility
constraint v, =0, (8.12)
leading to p = constant;

(2) the additional term —0p/0x, due to constrained response, where p = p(x,¢) is a
Lagrange multiplier, is added to the right-hand side of (8.7);

(3) all coefficients in (8.6)—(8.11) are in this case independent of p. It is evident that even
for inviscid flow, the governing equations for a turbulent fluid are fairly complex. In order to
more readily discuss certain features of these equations, we now introduce a number of
plausible simplifying assumptions for the internal energy € and the thermal and turbulent
entropies %y and 3., namely

e=cgOg+epbn g =9a0n), %r=17:(pp,0r4d;d,,). (8.13)
Here cHF and ¢y are constant thermal and turbulent specific heats, respectively; and we
emphasize that while 7y is taken to depend only on @y, 9 is assumed to be independent of
6y but is a function of the remaining variables ¥ in (6.3) except p, which is now a constant.
For an incompressible fluid with the use of (4.10), (6.10),, (6.15), (8.3), and the assumptions
(8.13), the thermal and turbulent entropy equations (8.10) and (8.11) are:

Crp 10
%0}1 = PSH+0_’67[0 (ko+ K, d; dz) % ]+P ¢o+¢1 ¢¢+¢2d ), (8.14)
H u 0%,

Plrg _ 19 0Oy
6y O = P5T+0Taxt [0'1‘(’\0'*‘/\1 d,d)) ax(]

6 L 2P
_PO—I; (Got+ 014, +¢,d,d) +Z_T¢.2d¢ wt+% (wg,y—vg 4y ). (8.15)

From the form of (8.14) and (8.15), it is evident that thermal and turbulent heat conductivities
kg and kg can be defined as

ky = Op(kot+Kydidy),  ky=0p(Ag+A,d,d). (8.16)

Also, from (4.10), (6.10),, (6.15) and the assumptions (8.13), it follows that y, must vanish and
the coefficient functions ¥, ¥, and ¥, must satisfy the equations

Oy g Wo,y g o )
Vo= et O+ Ot yby 2,
0 0
Vi = Oy ;{;1 +7 oTa“’ (8.17)
am aw

30-2
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Given 7,, the expressions (8.17) help to restrict the possible forms of the constitutive equations
for ¢y, ¥, and ¥,. '

It should be noted that the mechanical power P does not necessarily vanish for an inviscid
incompressible turbulent fluid. Also, the off-diagonal components of #; do not necessarily
vanish for an inviscid turbulent fluid, nor are the diagonal components necessarily all equal.
The terms involving the coefficients ¢,, ¢, and ¢, in (8.14) and (8.15) originally occur in the
expressions for £;; and £; and are associated with the dissipation of turbulent fluctuations into
thermal heat. We might, therefore, expect these coefficients to be non-negative. Other terms
in (8.14) involving k, and «, are associated with the diffusion of thermal energy, while similar
terms in (8.15) involving A, and A, are related to the diffusion of turbulent fluctuations in the
medium. Because it is expected that both thermal and turbulent heat diffuse in the direction of
decreasing (either thermal or turbulent) temperature, the coefficients &, k,, A, and A, are also
expected to be non-negative. Further, for an incompressible fluid, it might be expected that the
eddy density, pg will increase whenever 6 increases, thereby implying that the coefficients
vo and vy, of the rate of eddy production £ are also non-negative.

The last two terms in (8.15) may be associated with the production of turbulent fluctuations
due to straining represented by w, its gradient and gradient of v. These terms are obtained from
the turbulent entropy rate %, in (8.11) after using (6.15) and the form (8.3), for the free energy
Y. If Y is assumed to depend on higher orders of ¢, and 4, ; than that assumed in (8.3),, or if
certain viscous effects (discussed in §6) are included in the analysis, additional turbulent
production terms must necessarily be included in (8.15). Although one might expect the
director to increase as the rate of shearing of the fluid increases, this effect cannot be included
in the present inviscid theory because of the fact that the intrinsic director force k, is assumed
to be independent of 4,,. However, the jump condition for director momentum does admit a
source (or supply) term which can be expressed as a function of the relative velocmes on either
side of the jump. It may be recalled in this connection, that the so- -called ‘inner’ or ‘near-wall’
region of the microscopic turbulent boundary layer (where much of the production of turbulent
fluctuation and alignment of large eddies occurs) is included in the jump conditions at the
surface of discontinuity in the macroscopic theory discussed here.

In summary, we note that the inviscid assumption leads to the following features:

(1) the dissipation of the turbulent fluctuations into thermal heat;

(2) the diffusion of both thermal heat and turbulent fluctuations;

(3) the possibility of shear force, represented by the off-diagonal components of the stress
tensor, on a wall (even in the absence of a velocity gradient) because of the presence of the
director; '

(4) an increase in the eddy density because of .increase in the intensity of turbulent
fluctuations;

(56) the possibility of non-equal diagonal components of the stress tensor t,, even for a
vanishing velocity gradient; and

(6) the production of turbulent fluctuations by the rate of deformation of the fluid, occurring
both within the fluid and along a surface of discontinuity.

Clearly the system of equations (8.7)—(8.11) would not be applicable to turbulent flows when
the turbulent fluctuations become weak and the effects of rate-dependent terms involving the
variables (6.4) become increasingly more important. With this observation, it seems reasonable
to assume that when the turbulent fluctuations become sufficiently intense, the inviscid
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equations (8.4) and (8.5) may be sufficient to describe the behaviour of many macroscopic
turbulent flows (or at least certain parts of these flows). Below this level of intensity, however,
the more general constitutive relations (6.14)—(6.23), or possibly similar relations which may
depend on higher orders of d; and d, ;, must be used. That the latter equations do indeed
approach the equations appropriate for laminar flow when the additional turbulent variables
(6, d, pg) vanish can be readily demonstrated. The exact domain of applicability of the system
of equations of this section can, of course, only be determined by comparison of predictions of
the theory with experimental results.

9. ADDITIONAL REMARKS

The large eddies of turbulent flow are known to possess a great number of shapes and
orientations (see Grant (1958), Townsend (1956, 1976), Mumford (1982), Savill (1987)). Any
model describing the effect of these structures on the macroscopic flow must necessarily simplify
the complicated responses and interactions of these large eddies to obtain a manageable set of
equations. Also, it is not always clear whether or not a given set of eddies (such as the ‘vortex
street” type eddies in turbulent wake flow) represents a background structure on the
microscopic level or could be interpreted as a (non-chaotic) solution of the governing equations
on the macroscopic level. Indeed, the identification of the ‘macroscopic’ flow is very much
dependent ‘on the type of modelling employed. For example, in the ‘large eddy simulation’
technique described by Reynolds (1976), only the smallest scales of turbulent fluctuations are
considered ‘microscopic’ (i.e. requiring turbulence modelling) and all large-scale fluctuations
are considered ‘macroscopic’ (i.e. are directly computed). The present theory, therefore, does
not neglect the large vortex street type eddies, or similar other very large eddy structures, but
merely includes them as part of the macroscopic flow. In the present paper, we have attempted
to construct a physically motivated and a relatively simple theory which seems to incorporate
most of the observed features of turbulent fluid flow. The choice for the mechanical aspects of
the model introduced in §5 is influenced by a thorough review of the experimental literature
and examination of the macroscopic responses arising from consideration .of several possible
(director) constraints; and these, in turn, seem to indicate that the alignment of the large eddy
vorticity on the microscopic level with the macroscopic rate of deformation tensor (in the
manner described in §5) is largely responsible for fluid anisotropy. It may also be noted that
identification of the exact form of the microscopic structures causing macroscopic flow

.anisotropy (whether these structures have the form of ‘roller’ eddies, ‘hairpin’ eddies, etc.) is
not as important for the theory developed here as is identification of the mechanism causing the
anisotropy (i.e. straining of the eddies by the macroscopic flow), which is the basis of the
constraint (5.15),. Also, we note that the effect of alignment of eddies at recent past times
before the current time ¢ on the macroscopic flow may become important during rapid large
changes in the rate of deformation tensor (3. 1),. The latter effect has been implicitly neglected
in the present paper, in line with the statement in Appendlx A (see statement () of Townsend
1956). '

It should be emphasized again that the constitutive equations utilized in obtaining the
standard Navier—Stokes equations are not sufficient to adequately describe turbulent flow on
a macroscopic level. The validity of this. remark is most evident in' the inability of the
Navier-Stokes equations to properly account for fluid ‘anisotropy’: In particular, numerous
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experiments (for example, Uberoi 1956, Tucker & Reynolds 1968) have determined that for
a uniform flow in the positive #-direction, the ¢, component of the Cauchy stress tensor may
be significantly larger than the ¢,, and ¢;; components. Such. an effect can be clearly
accommodated for by the present theory (see, for example, equations (5.23), and (8.5)). The
Navier-Stokes equations, which demand that all three components of the stress tensor be equal
for such a flow, obviously cannot encompass such effects. Even in attempting to describe
‘isotropic’ turbulence, most theoretical analyses have had to cope with the introduction of
additional quantities pertaining to the turbulent motion (such as ‘mixing length,’ ‘turbulent
kinetic energy’). The assumption that the various response functions depend upon these
additional quantities implies that new constitutive assumptions have been introduced, even
though such constitutive relations are generally assumed to be similar to those used for laminar
flows. : '
“Finally, we need to make some remarks in regard to the applicability and appropriate use
of the invariance requirements under superposed rigid body motions (srRBM) pertaining to
theories of turbulent flow. It is conceivable that disregard of invariance may be inconsequential
in a particular application or context; however, it plays an important role in the development
of general theories of the type under discussion, including of course some restrictions on the
constitutive equations. We must, therefore, contest certain remarks which have appeared in the
literature (Lumley 1970, 1983) implying that invariance requirements do not apply to
turbulent flow. (Actually, Lumley refers to the ‘ principle of material frame indifference,’ rather
than requirements of invariance under srBM. The difference between the two is briefly
discussed in the last paragraph of §2.) Lumley’s argument is based on the claim that the
equations of motion in neither the continuum nor molecular theories are invariant. This claim
is false on both counts; in this connection, see the discussions by Naghdi (1972, pp. 484-486)
in the context of (three-dimensional) continuum mechanics, by Green (1982) in the contexts
of both continuum mechanics and molecular theory, and Woods’s (1983, p. 432)
acknowledgement of the importance of invariance in the latter category. Further, Lumley’s
statement (Lumley 1983, p. 1100, para. 2, lines 1-4) to the effect that the requirements of
invariance under sRBM on constitutive equations is equivalent to ‘...ignoring the inertia of any
motion responsible for the development of stress’ is also incorrect. This is because any change
in inertia due to a rigid motion is exactly balanced by a change in the body force such that the
momentum equation as a whole remains invariant. ‘

As noted previously (§§2 and 6), the various thermomechanical fields that occur in the
balance laws of the present paper are required to satisfy appropriate invariance conditions
under superposed rigid body motions. These requirements place certain restrictions on the
constitutive equations; and, as noted by Speziale (1979, 1980), are not satisfied in many
developments found in the literature.:

The results reported here were obtained in the course of research supported bfr the U.S.
‘Office of Naval Research under contract N00014-86-K-0057, Work Unit 4322 534 with the
University of California, Berkeley. ‘ '

APPENDIX A

The purpose of this appendix is to collect a number of quotations from the literature
(arranged in alphabetical order by names of the authors) on turbulent flow in order to provide
support for the model proposed in §5 of the paper. For each listing after indicating the source,
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before the actual quotation, we list the page number, paragraph, and the relevant lines of the
quotation. Multiple quotations from the same source are grouped under the same reference
heading. (Note: The term ‘strain’, which appears in many of the quotations, evidently is
intended for strain rate or more generally the rate of deformation tensor.)

Grant, H. L. (1958)

(a) p. 171, para. 2, lines 14
In a plane wake, the nature of the strain is a combination of a rotation and a plain strain
with principal axes of strain in directions at 45° to the usual coordinates, i.e., to the mean
direction of flow. The resultant anisotropy of turbulent intensity is also greatest for axes
aligned approximately in these directions.

(b) p. 183, para. 4, lines 1-3
... the large scale motions in the boundary layer are essentially the same as those which have
been found in the wake...

(¢) p. 189, para. 3, lines 34
...it is hard to account for the very slow decrease of anisotropy after the distortion.

Krishnamurti, R. & Howard, L. N. (1981)

(a) p. 1981, para. 1, lines 1-10
In a horizontal layer of fluid heated from below and cooled from above, cellular convection
with horizontal length scale comparable to the layer depth occurs for small enough values
of the Rayleigh number. As the Rayleigh number is increased, cellular flow disappears and
is replaced by a random array of transient plumes. Upon further increase, these plumes
drift in one direction near the bottom and in the opposite direction near the top of the layer
with the axis of plumes tilted in such a way that horizontal momentum is transported
upward via the Reynolds stress.

(b) p. 1985, para. 3, lines 3-8
The small-scale plumes were considerably narrower than the depth d of the layer, but they
tilted approximately 45° [to the direction of flow] and in this sense they occupied a
horizontal distance of about d. The large-scale flow was observed to continue around the
annulus, in one direction near the bottom and in the opposite direction near the top.

Mumford, J. C. (1982)
p. 241, para. 3, lines 14
The results indicate that the large eddies in the fully turbulent regime of the flow are roller-
like structures with axes aligned approximately either with the direction of the strain
associated with the mean velocity gradient or with the direction of homogeneity
(spanwise).

Rivlin, R. S. (1957)
p. 214, para. 5, lines 6-8
The eddies in a turbulent Newtonian fluid will presumably undergo preferential orientation
when the turbulent fluid is sheared providing a possible mechanism for the effects in the
turbulent fluid.

Rogers, M. M. & Moin, P. (1987)
p. 33, para. 1, lines 14, 14-16, 18-20
The structure of the vorticity fields in homogeneous turbulent shear flow and various
irrotational straining flows is examined using results from direct numerical simulations of
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the unsteady, incompressible Navier-Stokes equations with up to 128 x 128 x 128 grid
points... Examination of irrotational axisymmetric contraction, axisymmetric expansion,
and plane strain flows shows, as expected, that the vorticity tends to be aligned with the
direction of positive strain... The simulations strongly indicate that the vorticity occurs in
coherent filaments that are stretched and stengthened by the mean strain.

Savill, A. M. (1987)

Y 4

p. 535-5636, para. 5, lines 1-7

Consideration of the equation for turbulent vorticity in the presence of mean shear then
indicates that this has two effects on a vortex element: A mean vortex line can be stretched
along its length, generating vorticity fluctuations, while the vertical component of the
turbulent vorticity is rotated and stretched by the mean motion, generating a streamwise
component. A combmatlon of lifting, shearing, and stretching thus produces a horseshoe
vortex loop...

Taylor, G. I. & Green, A. E. (1937)
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p. 502, para. 3, lines 1-8

At the outset the extreme limitations of mathematical methods are very evident, for it is

only in special cases where the initial motion is such that one of the essential features of
turbulent motion (i.e., extension along vortex lines) is absent that the subsequent motion

has so far been calculated. By far the largest class of fields of flow which has been analyzed

mathematically is two-dimensional. Since the vortex lines are then perpendicular to the
plane of motion, they are not extendmg, and this essential characteristic of turbulent flow

is therefore absent.

Townsend, A. A. (1956)
(a) p. 101, para. 6, lines 1-7

Y o
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The large eddies, which distort the bounding surface, are simple eddies w1th central
vorticity along the principal axis of positive mean rate of strain, elongated in the direction
of flow and centered near the plane of maximum rate of shear. Their life is comparable with
the time for appreciable development of the flow, but they are not permanent structures,
new ones arising as old ones disappear.

p. 117, para. 2, lines 11-15

It is expected that a turbulent shear flow w1th an equilibrium structure will respond to a
superimposed velocity perturbation by establishing quite quickly the equilibrium structure
appropriate to the new type of strain and oriented along the new principal axes.

p. 120, para. 2, lines 1-5 :

The large eddies are believed to begin their distinct existence as a chance configuration of
the turbulent motion of suitably large scale and orientation that it can absorb energy from
the mean flow in sufficient quantity to prevent its rapid disappearance by turbulent
transfer. ’

p. 48, para. 2, lines 1-2 .

When anisotropic turbulence is produced...the return to isotropy is found to be very
slow ... :

Townsend, A. A. (1976)
(a) p. 187, para. 2, lines 1-12
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Near identity of the directions of the eddies could be a result either of the process of
generation or of a mechanism for alignment of the developed eddies. To the extent that the
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active portion of each eddy is to some degree concentrated near its centre, the generation
process should lead to a normal double-roller eddy with shear stress and axis aligned with
the velocity gradient. Further, the inclined and trailing form of the double roller means
that fully developed eddies will be kept in alignment by the velocity gradient. Naturally,
_if directions and magnitudes of shear change rapidly with height, eddies may be distorted
or not aligned with the local shear, but the effect is essentially similar to that of energy
diffusion in an attached eddy and is expected to be quite small.
(b) p. 235, para. 1, lines 6-8
One effect of the mean velocity gradient is to align eddies with their axes parallel to the
direction of extension..
(¢) p. 240, para. 2, lines 4-6
..the behaviour of the displacement and intermittency correlations is what might be
expected if roller eddies with axes aligned with the flow performed the distortion.
Tucker, H. J. & Reynolds, A. J. (1968)
(a) p. 669, para. 9, lines 1-2
The results indicate that the structure dcveloped in the turbulence is mainly the result of
the mean motion straining the eddies..
(b) p. 669, para. 10, lines 1-3
.. the influence of uniform strain on the structure of turbulence depends primarily on the
strain and to a small extent, if at all, on the orientation of the strain relative to the main
flow direction.
Uberoi, M. S. (1956)
p. 764, para. 2, lines 13-18
Naturally, directional influence of shear flow on the turbulence is most pronounced in the
direction of the principal axes. In shear flow, measurement of mean square turbulent
velocity gradlents along the principal axis of the rate of deformation might reveal
anisotropy.

REFERENCES

Bradshaw, P. 1972 The understanding and prediction of turbulent flow. Aeronaut. J. 76, 403—418.

Caulk, D. A. 1976 On the problem of fluid flow under a sluice gate. Int. J. Engng Sci. 14, 1115-1125.

Cebeci, T. & Smith, A. M. O. 1974 Analysis of turbulent boundary layers. New York: Academic Press.

Chandrasekhar, S. 1977 Liguid crystals. Cambridge University Press.

Clauser, F. H. 1956 The turbulent boundary layer. Adv. appl. Mech. 4, 1-51.

Ericksen, J. L. 1961 Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23-34.

Grant, H. L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4, 149-190.

Green, A. E. 1982 A note on “axioms of continuum mechanics.” Bull. Inst. Math. Applics 18, 7-9; 18, 154.

Green, A. E. & Naghdi, P. M. 1976a Directed fluid sheets. Proc. R. Soc. Lond. A 347, 447-473.

Green, A. E. & Naghdi, P. M. 19765 A derivation of equations for wave propagation in water of variable depth.
J. Fluid Mech. 78, 237-246.

Green, A. E. & Naghdi, P. M. 19772 On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. -
A 357, 253-270.

Green, A. E. & Naghdi, P. M. 19776 Water waves in a nonhomogeneous incompressible fluid. J. appl. Mech. 44,
523-528.

Green, A. E. & Naghdi, P. M. 1978 On thermodynamics and the nature of the second law for mixtures of
interacting continua. Q. JI Meck. appl. Math. 31, 265-293.

Green, A. E. & Naghdi, P. M. 19792 A note on invariance under superposed rigid body motions. J. Elasticity 9,
1-8.

Green, A.E. & Naghdi, P. M. 19794 On thermal effects in the theory of shells. Proc. R. Soc. Lond. A 365,
161-190.

31 Vol. 327. A


http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

a
R

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

448 J-S. MARSHALL AND P. M. NAGHDI

Green, A.E., Naghdi, P. M. & Rivlin, R. S. 1965 Directors and multipolar displacements in continuum
mechanics. Int. J. Engng Sci. 2, 611-620.

Green, A. E., Naghdi, P. M. & Trapp, J. A. 1970 Thermodynamics of a continuum with internal constraints. Int.
J. Engng Sci. 8, 891-908.

Krishnamutri, R. & Howard, L. N. 1981 Large scale flow generation in turbulent convection. Proc. natn Acad. Sci.
US.A. 78, 1981-1985.

Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure.
J. Fluid Mech. 68, 537-566.

Leslie, F. M. 1968 Some thermal effects in cholesteric liquid crystals. Proc. R. Soc. Lond. A 307, 359-372.

Lumley, J. L. 1970 Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413-434.

Lumley, J. L. 1983 Turbulence modeling. J. appl. Mech 50, 1097-1103.

Mumford, J. C. 1982 The structure of large eddies in fully developed turbulent shear flows, Part 1, the plane jet.
J. Fluid Mech. 118, 241-268.

Naghdi, P. M. 1972 The theory of shells and plates. In S. Fligge’s Handbuch der Physik (ed. C. Truesdell), vol. VIa/
2, pp. 425-640. Berlin: Springer-Verlag.

Naghdi, P. M. 1982 Finite deformations of elastic rods and shells. In Proc. IUTAM Symp. on * Finite Elasticity™
(Bethlehem, PA 1980) (ed. D. E. Carlson & R.T. Shield), pp. 47-103. The Hague: Martinus Nijhoff
Publishers.

Naghdi, P. M. & Rubin, M. R. 1981 On the transition to planing of a boat. J. Fluid Mech. 103, 345-374.

Prandtl, L. 1925 Bericht iiber Untersuchungen zur ausgebildeten Turbulenz. Z. angew. Math. Mech. S,
136-139.

Reynolds, W. C. 1976 Computation of turbulent flows. 4. Rev. Fluid Mech. 8, 183-208.

Rivlin, R. S. 1957 The relation betwen the flow of non-Newtonian fluids and turbulent Newtonian fluids. . app!l.
Math. 15, 212-215.

Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech.
176, 33-66.

Saffman, P. G. 1970 A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317, 417-433.

Savill, A. M. 1987 Recent developments in rapid-distortion theory. 4. Rev. Fluid Mech. 19, 531-575.

Speziale, C. G. 1979 Invariance of turbulence closure models. Physics Fluids 22, 1033-1037.

Speziale, C. G. 1980 Closure relations for the pressure-strain correlation of turbulence. Physics Fluids 23,
459-463.

Taylor, G. 1. 1915 Eddy motion in the atmosphere. Phil. Trans. R. Soc. Lond. A 215, 1-26.

Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond.
A 158, 499-521.

Tennekes, H. & Lumley, J. L. 1972 A first course in turbulence. Cambridge, Massachusetts: MIT Press.

Townsend, A. A. 1956 The structure of turbulent shear flow, 1st edn. Cambridge University Press.

Townsend, A. A. 1976 The structure of turbulent shear flow, 2nd edn. Cambridge University Press.

Truesdell, C. & Noll, W. 1965 The non-linear field theories of mechanics. In S. Fligge’s Handbuch der Physik, vol.
I11/3. Berlin: Springer-Verlag.

Truesdell, C. & Toupin, R. A. 1960 The classical field theories. In S. Fligge’s Handbuch der Physick, vol. 1I1/1,
pp. 226-790. Berlin: Springer-Verlag. :

Tucker, H. J. & Reynolds, A. J. 1968 The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32,
657-673.

Uberoi, M. S. 1956 Effect of wind-tunnel contraction on free-stream turbulence. J. aeronaut. Sci. 23, 7564-764.

Woods, L. C. 1983 Frame-indifferent kinetic theory. J. Fluid Mech. 136, 423-433.


http://rsta.royalsocietypublishing.org/

